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Abstract. This paper formulates and analyzes a pattern search method for general constrained optimization
based on filter methods for step acceptance. Roughly, a filter method accepts a step that either improves the objec-
tive function value or the value of some function that measures the constraint violation. The new algorithm does
not compute or approximate any derivatives, penalty constants or Lagrange multipliers. A key feature of the new
algorithm is that it preserves the useful division into global SEARCH and local POLL steps. It is shown here that
the algorithm identifies limit points at which optimality conditions depend on local smoothness of the functions.
Stronger optimality conditions are guaranteed for smoother functions. In the absence of general constraints, the
proposed algorithm and its convergence analysis generalize the previous work on unconstrained, bound constrained
and linearly constrained generalized pattern search. The algorithm is illustrated on some test examples and on an
industrial wing planform engineering design application.
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1. Introduction. The optimization problem considered in this paper is

min
x∈X

f (x)

s.t. C(x)≤ 0 ,
(1.1)

where f : X → R∪{∞} and C : X → (R∪{∞})m are functions with C = (c1, . . . ,cm)T , and
X is a full dimensional polyhedron in R

n defined by finitely many nondegenerate explicit
bound and linear constraints. It is possible, for instance when the functions are provided as
“black box” subroutine calls, that some constraints might be linear without the knowledge
of the user. In that case, these linear constraints are incorporated in C(x) ≤ 0. The feasible
region defined by the constraints C(x)≤ 0 is denoted by Ω. The proposed approach combines
aspects of filter algorithms to handle Ω, and pattern search algorithms to handle X .

Filter algorithms were introduced by Fletcher and Leyffer [14] as a way to globalize
sequential linear and quadratic programming (SQP and SLP) without using any merit function
that would require a troublesome parameter to be provided by the user for weighting the
relative merits of improving feasibility and optimality. A filter algorithm introduces a function
that aggregates constraint violations and then treats the resulting biobjective problem. A
step is accepted if it either reduces the value of the objective function or of the constraint
violation. Although this clearly is less parameter dependent than a penalty function, still we
acknowledge that specifying a constraint violation function implies assigning relative weights
to reducing each constraint.

Fletcher et al. [15, 16] show convergence of the filter method that uses SQP or SLP
to suggest steps. In both cases, convergence is to a point satisfying Fritz John optimality
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conditions. Thus, previous filter algorithms require explicit use of the derivatives of both the
objective and the constraints. They also require more than simple decrease of the objective
and constraint violation functions to accept a step. Furthermore, Fritz John optimality is
weaker than the more common Karush-Kuhn-Tucker conditions, but, numerical results for
the filter methods are very promising. It is well to remember that the theoretical justification
for quasi-Newton methods trailed their efficacy by several years.

The generalized pattern search algorithm class (GPS) designed by Torczon [26] unifies
a wide class of useful derivative-free algorithms for unconstrained optimization. Lewis and
Torczon extended the GPS framework to bound constrained optimization [20], and more
generally [22], for problems with a finite number of linear constraints. Audet and Dennis [2]
allow extended valued functions, which arise often in practice (e.g., [4, 5]), and provide
an analysis that, among other things, identifies a specific set of limit points allowing the
application of Clarke’s [8] generalized derivatives under local Lipschitz continuity to unify,
strengthen and simplify the unconstrained and simply constrained Lewis and Torczon theory.

Under the assumption that f is continuously differentiable, Torczon [26] showed that
GPS methods produce some limit point for which the gradient of the objective function is
zero, and Lewis and Torczon showed that their adaptations produce a Karush-Kuhn-Tucker
point for bound constrained [20] and linearly constrained [22] problems.

Subsequences of trial points that are optimizers in some discrete sense are considered
in [2]. Even without any assumptions on the smoothness of f , limit points of these subse-
quences are shown to exist under standard assumptions. It is also shown that the following
intermediate results hold : If it turns out that f is Lipschitz near a strictly feasible limit point
then Clarke’s derivatives are nonnegative on a set of positive spanning directions. A posi-
tive spanning set is a set of directions in R

n whose non-negative linear combinations span
the whole space R

n. Moreover, if f is strictly differentiable (defined in Section 5.2) at that
strictly feasible point, then the gradient is guaranteed to be zero. Similar results are shown
when the limit point is on the boundary of the linearly constrained domain.

Assuming that the functions f and C are twice continuously differentiable and that the
constraint Jacobian has full rank, Lewis and Torczon [23] propose and analyze a derivative-
free procedure to handle general constraints. In their procedure, GPS for bound constraints
is used to carry out the specified inexact minimizations of the sequence of augmented La-
grangian subproblems formulated by Conn, Gould, and Toint [9]. Our algorithm is a GPS
alternative to their method, for the cases when one would prefer not to assume continuous
second derivatives, or when one wishes to avoid estimating penalty parameters and Lagrange
multipliers, but is willing to settle for weaker optimality conditions. Thus, we do not claim
that our method is to be preferred for every problem.

One of our objectives is to construct an algorithm that can be used on applications where
the objective and constraints are not given analytically, but as “black boxes”. For such ap-
plications, a value x ∈ R

n will be used as input to a nontrivial simulation to evaluate f (x)
and C(x). The subroutine call may fail to return a value a significant percentage of times it
is invoked [4, 5, 6, 7, 17], and even when it succeeds several factors (e.g., noise, numerical
instability, modelling inaccuracy,...), may mean that one cannot construct accurate approxi-
mate derivatives. Under these circumstances, i.e., the structure of the functions is unknown to
the optimizer, we will settle for weakened local optimality convergence results. The pattern
search filter algorithm presented here has the following features:

• It is completely derivative-free. It does not use or approximate any derivative infor-
mation, nor does it attempt to linearize any constraint.
• It transparently generalizes GPS for unconstrained problems and for bound or linear

constraints when they are treated, as in [2, 20, 22], by rejecting points infeasible for
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those constraints, and by selecting polling directions that conform to the boundary
of the domain (see Definition 4.1).

• It uses a step acceptance rule based on filter methods, so there is no need for any
penalty constants or Lagrange multiplier estimates.

• It makes assumptions on the problem functions f and C that conform to the practical
instances that interest us most [4, 3, 5]. They may be discontinuous and even take on
infinite values. Therefore, no global smoothness assumption is justified; however,
the strength of the optimality conditions guaranteed by the algorithm depends on
local smoothness of the functions at the limit point.

• It preserves the desirable GPS property of requiring only simple decrease, which is
expressed in the present context with respect to both the objective and and constraint
violation functions.

• It does not require any constraint qualifications.
The Boeing Design Explorer software uses the GPS filter algorithm given here as a meta

algorithm in the surrogate management framework for general nonlinear programming [3].
Thus, a key issue for us is that we preserve the division into SEARCH and POLL steps. The
SEARCH steps we prefer make a global exploration of the variable space, and they might use
inexpensive surrogates objective and constraints. The POLL step is a local exploration near an
incumbent point and allows the theory to guarantee convergence. Both the SEARCH and POLL
steps are detailed in Section 2. Another use of our algorithm, with properly chosen SEARCH
steps is when one would rather not find only the nearby local optimizer usually found by
derivative-based methods, but instead is willing to use some function evaluations to explore
the domain more thoroughly. It is important to keep in mind that global optimization of black
box functions is impossible, even to the point that if one had the global optimum, one would
not be certain of it [25].

The paper is organized as follows. Sections 2 and 3 give a brief description of pattern
search and filter algorithms. In Section 4, we present and begin the analysis of a new al-
gorithm that combines their features. Specifically, without any smoothness assumptions on
the problem, we show the existence of some promising limit points. Our optimality results
rely on Clarke’s calculus with respect to both the constraint violation and objective functions,
and on the notion of contingent cones, and so we provide the necessary background in Sec-
tion 5. Section 6 shows that if the constraint violation or objective function is locally smooth
at such a limit point, then some first order optimality conditions are satisfied. In the absence
of general constraints, the convergence results reduce to those presented in [2]. Finally, in
Section 7, we make important points through three examples. First we show the value of a
filter method as opposed to a “barrier” method, which rejects trial points that violate the linear
constraints, [22, 2]. Second we show the advantages for our algorithm of a squared `2 over
an `1 measure of constraint violations. Third we show that our main convergence result con-
cerning the objective function cannot be improved without removing some of the flexibility
of the algorithm or adding more assumptions about the problem. We conclude this section by
applying our method to a real engineering problem. These examples show the strength and
limitations of our approach. The paper concludes by a discussion of the significance of the
convergence results.

M. Abramson’s MatLab 6 implementation NOMADm of a suite of algorithms including
the filter algorithm given here is at http://www.caam.rice.edu/∼abramson/NOMADm.html.
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2. Pattern search algorithms for unconstrained optimization. The reader is referred
to [22, 2] for a thorough description of linearly constrained pattern search algorithms. In the
present document, the same notation as in [2] is used.

2.1. Search and poll steps. Pattern search algorithms for unconstrained minimization
generate a sequence of iterates {xk} in R

n with non-increasing objective function values. At
each iteration, the objective function is evaluated at a finite number of points on a mesh (a
discrete subset of R

n defined below) to try to find one that yields a lower objective function
value than the incumbent. An incumbent solution is a trial point in R

n where the algorithm
evaluated the objective function f and has the lowest value found so far. Any strategy may
be used to select mesh points that are to be candidates for the next iteration, provided that
only a finite number of points (possibly none) are selected. This is called the SEARCH step.
We favor SEARCH procedures that choose candidate points independent of the incumbent and
whose global reach is independent of the mesh size. We feel that such SEARCH procedures
are more likely to discover different basins for the function than the one in which the initial
point lies.

When the SEARCH fails in finding an improved mesh point, the POLL step must be in-
voked. In that “fall back” step the function value is evaluated at neighboring mesh points
around xk. If the POLL step also fails in finding an improved mesh point, then xk is said to be
a mesh local optimizer. The mesh is then refined and xk+1 is set to xk. The situation for our
constrained version is going to be a bit more complex, but is consistent in spirit.

If either the SEARCH or POLL step succeeds in finding an improved mesh point xk+1 6= xk
with a strictly lower objective function value, then the mesh size parameter is kept the same
or increased, and the process is reiterated. Indeed, as long as improved mesh points are
found, one would likely choose trial points on coarser meshes. With surrogate-based SEARCH
steps [4], a great deal of progress can often be made with few function values, and O(n)
function values are needed only when the POLL step detects a mesh local optimizer, which
indicates that the mesh needs to be refined. We warn the reader that there is only a cursory
discussion of SEARCH strategies in the present paper. The reason is that since the SEARCH
is free of any rule, except finiteness and being on the mesh, it cannot be used to enhance
the convergence theory. Indeed, some examples in [1] exploit perverse SEARCH strategies to
show negative results. However, we are willing to pay this “theoretical” price for the practical
reasons given above.

The formal definition of the mesh requires the following. Let D be a finite matrix whose
columns in R

n form a positive spanning set. We use the notation d ∈ D to indicate that d
is a column of the matrix D. It is also required that each column d ∈ D is the product of a
non-singular generating matrix G ∈R

n×n by some integer vector in Z
n. The same generating

matrix G is used for all directions d. See [1, 2] for further insight on this set D, or see [26] for
the original equivalent formulation. The set valued function M(·, ·) defines the current mesh
through the lattices spanned by the columns of D, centered around the current iterate xk:

M(xk,∆k) = {xk +∆kDz : z ∈ N
nD} ,(2.1)

where ∆k ∈R+ is the mesh size parameter, and nD is the number of columns of the matrix D.
Note that in Section 4.2 on the filter GPS algorithm, we will use a more general definition of
the mesh.

When the SEARCH fails in providing an improved mesh point, the objective function must
be evaluated at the mesh points that neighbor the current iterate xk, the current incumbent
solution. In the unconstrained case this poll center is xk, the current iterate. This defines
the poll set Pk = {xk}∪{xk +∆kd : d ∈ Dk} for some positive spanning matrix Dk ⊆ D. This
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notation means that the columns of Dk are chosen from those of D. We will refer to evaluating
f (xk +∆kd) as polling in the direction d.

In the filter algorithm presented in Section 4, we may not poll about the current iterate,
but instead we will poll about some possibly different poll center with a different definition
for the current mesh.

2.2. Parameter update. At any iteration, there are two possible outcomes, which lead
to two sets of rules to update the parameters.

If the iteration fails to produce an improved mesh point, then the POLL step guarantees
that xk is a mesh local optimizer. The mesh is then refined. More precisely,

∆k+1 = τwk ∆k(2.2)

with 0 < τwk < 1, where τ > 1 is a rational number that remains constant over all iterations,
and wk ≤−1 is an integer bounded below by the constant w− ≤−1.

If the iteration produces an improved mesh point, then the mesh size parameter is kept
the same or is increased, and the process is reiterated. The coarsening of the mesh follows
the rule

∆k+1 = τwk ∆k(2.3)

where τ > 1 is defined above and wk ≥ 0 is an integer bounded above by w+ ≥ 0. By modi-
fying the mesh size parameters this way, it follows that for any k ≥ 0, there exists an integer
rk ∈ Z such that ∆k = τrk ∆0.

Typical values for the mesh parameter update are τ = 2 and wk =−1 when the poll center
is shown to be a local mesh optimizer, and wk = 1 when an improved mesh point is found.
This leads to setting ∆k+1 = 1

2 ∆k when the mesh needs to be refined, and ∆k+1 = 2∆k when
the mesh is coarsened. An example of the direction matrix might be D = [In − In], where In
is the n×n identity matrix. The mesh would then be M(xk,∆k) = {xk +∆kz : z ∈ Z

n} and the
POLL set would be Pk = {xk}∪{xk±∆kei : i = 1,2, . . . ,n}, where ei is the ith column of the
identity matrix. In the case where D is constructed from all the columns of the set {−1,0,1}n,
the mesh is the same as the previous one, but the POLL set may differ. In R

2 for instance it
could be Pk = {xk,xk +∆k(1,0)T ,xk +∆k(0,1)T ,xk +∆k(−1,−1)T}.

We borrow Coope and Price’s [10] terminology for the following final remark on GPS.
These methods are said to be opportunistic in the sense that as soon as an improved mesh
point is found, the current iteration may stop without completing the function evaluations in
the SEARCH and POLL steps.

3. Filter algorithms for constrained optimization. Filter algorithms treat the opti-
mization problem as biobjective: one wishes to minimize both the objective function f and a
nonnegative aggregate constraint violation function h. Filter algorithms attempt to minimize
both functions, but clearly priority must be given to h, at least until a feasible iterate is found.
This priority appears also in our algorithm in the definition of the poll centers and the poll set.
Fletcher et al. [14, 15, 16] do this via restoration steps. Another difference is that in keep-
ing with pattern search algorithms for less general problems, we require only improvement
in either f or h, while Fletcher et al. have a sufficient decrease condition in the form of an
envelope over the filter that constitutes a “sufficiently unfiltered” condition.

The terminology used in this paper differs slightly from that used by Fletcher et al. Our
notation is more compact for our class of algorithms, and so it simplifies the presentation of
our results. In addition, since our plan is to provide a truly multiobjective GPS algorithm
in later work, and since it is likely to involve a version of the filter, it is best to conform to
standard terminology in multiobjective optimization. [13]
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Fletcher et al.’s definition of dominance makes it a reflexive relation, which simplifies the
definition of a filter, but we will forgo that convenience to adhere to standard multiobjective
terminology. The point is that the reader familiar with the filter literature should read this
section carefully. We will end up with almost the standard notion of a filter, but we will define
it slightly differently using the standard multiobjective notion of dominance: For a pair of
vectors w,w′, with finite components, w dominates w′ ,written w≺w′ , if and only if ∀i,wi ≤
w′i , and w 6= w′. We will use w � w′ to indicate that either w ≺ w′, or that w = w′, which is
the notion of dominance used in earlier filter papers.

The constraint violation function is defined to satisfy the following properties: h(x)≥ 0,
h(x) = 0 if and only if x is feasible, thus h(x) > 0 if and only if x is infeasible, and h(x) = +∞
whenever any component of C(x) is infinite. For example, we could set h(x) = ‖C(x)+‖where
‖ · ‖ is a vector norm and where (C(x)+)i is set to zero if ci(x) ≤ 0 and to ci(x) otherwise,
i = 1,2, . . . ,n. We show in Section 6.1 that the more locally smooth h is, the better the
algorithm is able to exploit the positive spanning sets used. Our analysis and the examples in
Sections 5.2 and 7.2 indicate that h(x) = ‖C(x)+‖2

2 is a sound choice.
Recall that the feasible region of the optimization problem (1.1) is defined to be the

intersection of a polyhedron X and Ω. Since it is simple to remain feasible with respect to
X , we define a second constraint violation function hX = h + ψX , where ψX is the indicator
function for X . It is zero on X and +∞ elsewhere. We will see in the next section that
by applying our pattern search filter algorithm to hX and f , the convergence results with
respect to feasibility will depend on local smoothness of h, and not of hX , which is obviously
discontinuous on the boundary of X .

There should be no confusion in defining a special meaning of dominance for the vector
arguments of our problem functions hX , f . This will simplify our terminology rather than to
use some other symbol such as ≺(hX , f ). Thus, a point xk ∈ R

n is said to dominate x ∈ R
n,

xk ≺ x if and only if (hX (xk), f (xk))
T ≺ (hX (x), f (x))T . Two points are equivalent if they

generate an identical pair of hX and f values. As above, x� x′ indicates that either x≺ x′, or
x and x′ are equivalent.

A filter F is a finite set of infeasible points in R
n such that no pair x,x′ in the filter are

in the relation x ≺ x′. A point x′ is said to be filtered if either x′ � x for some x ∈ F , or if
hX (x′)≥ hmax for some positive finite upper bound hmax on allowable aggregate infeasibility,
or if x is feasible and f (x)≥ f F (i.e., the least function value found so far at a feasible point).
The point x is unfiltered otherwise. The set of filtered points F is denoted in standard notation
as:

F =
⋃

x∈F

{

x′ : x′ � x
}

∪{x′ : hX (x′)≥ hmax}∪{x′ : hX (x′) = 0, f (x′)≥ f F}.(3.1)

Observe that our notation implies that trial points tying an incumbent’s f and h values are
filtered, and thus are not improved mesh points However, they will be poll center candidates.

Unfiltered points are added to F as they are generated, and filtered ones are rejected.
Whether a point is filtered can depend on when it is generated. This temporal property causes
“blocking entries” [14]. In order to avoid the problem of blocking entries, the filter contains
only infeasible points. The incumbent best feasible point is treated separately as a sort of
single point filter that can only filter other feasible points. The reason for this separation is
to encourage moving over an infeasible function ridge and approaching a different part of the
feasible region.
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4. A pattern search filter algorithm for constrained optimization. In the previous
sections we presented the filter framework for general constraints, and the GPS algorithm
for unconstrained optimization. We now present a GPS filter method for the optimization
problem (1.1). When some of the constraints are known to be linear, i.e., when X is not
trivial, it is frequently advantageous to treat them separately from the others and to ask that
every iterate belongs to X . This is especially true of linear equality or bound constraints. For
any derivative-free algorithm, one should surely use linear equality constraints to eliminate
variables, and this is desirable for nonlinear equality constraints if it is practical.

4.1. Bound and linear constraints. By applying the algorithm to hX instead of h, any
trial point outside of X is rejected since its constraint violation function value is larger than
hmax. We called this the “barrier” approach for X . In the absence of general constraints [2],
the indicator function is added to f instead of h. In the present work, we cannot add it to f
since the trial points x ∈ X for which −∞ < f (x)≤ ∞ and 0 < h(x) < h(x′) for all x′ ∈ F are
unfiltered.

In addition, the fact that some linear constraints are explicitly known must be used to
select mesh directions that take into account the geometry of the region X , just as suggested
in [20, 22, 2]: When the poll center is within a given tolerance ε > 0 of the boundary of X ,
then the positive spanning directions Dk that define the poll set are chosen to contain the ones
that span the tangent cone TX (y) to X at all boundary points y within the tolerance ε. The
formal definition is as follows:

DEFINITION 4.1. A rule for selecting the positive spanning sets Dk = D(k,xk) ⊆ D
conforms to X for some ε > 0, if at each iteration k and for each y in the boundary of X for
which ‖y− xk‖< ε, TX (y) is generated by a nonnegative linear combinations of the columns
of a subset Dy

k of Dk.
These tangent cone directions should be added to Dk before getting too close to the

boundary, i.e., it is best in our experience not to take the tolerance ε too small.

4.2. Meshes and poll centers. In our proposed pattern search algorithm, the test for
accepting an improved mesh point is not based solely on the decrease of the objective function
value when there are constraints. Therefore, the terminology improved mesh point (used
in the unconstrained case) is not suited in a biobjective context. Instead, we will use the
terminology unfiltered mesh point when either the SEARCH or POLL step finds a mesh point
that is not filtered. If both steps fail in finding an unfiltered mesh point, then we cannot say
that the poll center is a mesh local optimizer (as in the unconstrained case), instead we will
say that the poll center, which will be chosen to be one of two special points in the filter or
else a point that ties one of them, is a mesh isolated filter point since its mesh neighbors (the
points in the poll set) are all filtered.

As in the pattern search algorithms presented in Section 2, the SEARCH and POLL steps
are opportunistic, and may be terminated without any more function evaluations when an
unfiltered mesh point is found. The mesh size parameter is then either increased or kept
constant according to rule (2.3). When no such point is found, the poll center is a mesh
isolated filter point and the filter remains unmodified. The mesh size parameter is decreased
according to rule (2.2). Unlike Fletcher et al.’s filter algorithms, there is no “envelope” added
to the filter to guarantee a form of sufficient decrease.

We define two types of incumbents: the feasible ones, and the infeasible ones with min-
imal constraint violation. Let f F

k represent the feasible incumbent value, i.e., the smallest
objective function value (for feasible points) found by the algorithm up to iteration k If no
feasible point has been found, f F

k is set at ∞. Let hI
k > 0 be the least positive constraint vio-

lation function value found up to iteration k, and let f I
k denote the smallest objective function

value of the points found whose constraint violation function values are equal to hI
k. If no
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such point exists, or if hI
k > hmax then hI

k is fixed at hmax and f I
k at −∞. The superscript F

stands for feasible and I for infeasible. Figure 4.1 shows an example of a filter. Any x ∈ Ω,
found by the algorithm, is a feasible incumbent point if f (x) = f F

k , and it is an infeasible
incumbent point if h(x) = hI

k and f (x) = f I
k .

6f

-
hX

f F
k

(hI
k, f I

k )

hmax

F k
Feasible region: Ω = {x ∈ R

n : hX (x) = 0}
Trial point: tk ∈M(xk,∆k)

Filtered trial point: tk ∈ F k
Unfiltered mesh point: tk 6∈ F k
Mesh isolated filter point: Pk ⊂ F k

FIG. 4.1. Feasible incumbent set: {x ∈ Ω∩ Sk : f (x) = f F
k }. Infeasible incumbent set {x ∈ X ∩ Sk : h(x) =

hI
k, f (x) = f I

k}.

Our filter algorithm does not have a sufficient decrease condition. Any unfiltered mesh
point (i.e., for which x 6∈ F – see equation (3.1)) is a candidate for being a new iterate. Our
convergence results are for the iterates that are incumbents. Still, iterate is a useful term in an
implementation because a new iterate means a new unfiltered mesh point has been found and
the user can continue to search on the current mesh as in [3] without resorting to a POLL step.

In the unconstrained case, there was a single type of incumbent solution. Therefore the
mesh was necessarily constructed around it. We redefine the current mesh so that it contains
more points, therefore allowing more flexibility to the algorithm. Recall that the mesh is
conceptual in the sense that it is never actually constructed, and its sole purpose is to allow
us to capture some structure about the trial points so that we can derive some convergence
results. Let S0 be the set of initial trial points provided by the user at which the function
values are computed. We assume that at least one point of S0 has a constraint violation
function value less than hmax and that every element of S0 lies on M0(x,∆0) (see (2.1)) for
some x ∈ S0. Define Sk to be the set of points where the functions were evaluated by the start
of iteration k. The mesh is now defined as the following union:

M(Sk,∆k) =
⋃

x∈Sk

M(x,∆k) ,(4.1)

where M(x,∆k) is defined in equation (2.1). This new definition allows more flexibility to the
user. For example, the SEARCH step is now allowed to poll around any trial point x in Sk, i.e.,
to evaluate the functions at points from the set {x+∆kd : d ∈ D}.

The poll center pk, the point around which the poll set is constructed, is chosen either
in the set of feasible incumbents or to be one of the infeasible incumbents with minimal
constraint violation. Note that when these sets of incumbents are non-empty, they each will
usually be composed of a single element. Thus, the poll center either satisfies

(hX (pk), f (pk)) = (0, f F
k ) or (hX (pk), f (pk)) = (hI

k, f I
k ) .(4.2)

The poll set is the poll center pk together with its mesh neighbors:

Pk = {pk}∪{pk +∆kd : d ∈ Dk} .(4.3)
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The positive spanning matrix Dk is composed of columns of D and conforms to the boundary
of the linear constraints for an ε > 0 (see Definition 4.1). The current iterate xk is typically
used to seed the SEARCH step, and the poll center is always used for the POLL step.

Our class of algorithms and their analysis are completely flexible about the choice be-
tween these two sets of poll centers. The user may supply a strategy to select a poll center. In
Section 7, we give what we hope are convincing arguments not to always make one choice or
the other. Indeed, always choosing a stationary feasible poll center makes the filter algorithm
essentially reduce to the barrier approach, which is not indicated for constraints where the
polling directions do not conform to the feasible region. Still, we prefer neither to prescribe
nor to proscribe any choice rule for poll centers. This flexibility may seem tedious to the
reader, but the user may have a clear preference based on the results of the SEARCH, which
may have involved some strategy that makes it unlikely that one or the other choice would
be successful. For example, surrogate polling around several filter points in the SEARCH step
seems promising in early tests, and the results would be likely to influence the choice of poll
center.

Even if we already have a feasible incumbent point, we may wish to poll around one of
the least infeasible points, which might have a lower objective function value, in order to try
to find and explore a different part of the feasible region Ω. Also, this is what allows our
filter algorithm to avoid stalling in the Lewis and Torczon [20] example when those linear
constraints are treated by the filter. This is illustrated in Section 7.1.

4.3. Description of the algorithm. At any iteration, three types of unfiltered mesh
points xk+1 ∈M(Sk,∆k) can be generated by the algorithm: The most useful ones are the unfil-
tered feasible mesh points. They improve the feasible incumbent value to f F

k+1 = f (xk+1) <

f F
k . Next are the infeasible ones that improve the infeasible incumbent with minimal con-

straint violation: 0 < hI
k+1 = hX (xk+1) < hI

k and f I
k+1 = f (xk+1). Finally there are the other

infeasible ones that add some elements to the filter, but leave the incumbents unchanged. In
all three cases, the mesh size parameter is updated according to rule (2.3), with possibly some
different values of wk.

To check if a trial point x is filtered or not, the following strategy is used in order to avoid
wasting expensive function evaluations of f and C. First ψX (x) is evaluated by determining
if x belongs to X . If not, then x is filtered and the evaluation of f (x) and C(x) is avoided.
Second, it is possible that partial information on C(x) allows the algorithm to conclude that
x is filtered. For example, if h(x) = ‖C(x)+‖2

2 and if it known that ∑p
i=1 |ci(x)+|2 ≥ hmax

for some index p < m, then the evaluation of f (x) and ci(x) for i = p + 1, p + 2, . . . ,m is
not necessary. Similar observations hold if f (x) and partial information on C(x) are known,
though this situation is more complicated since the value of f (x) alone can not allow us to
conclude that x is filtered without at least partial knowledge of h(x).

When all trial points are filtered, then the poll center pk is a mesh isolated filter point.
Regardless of the feasibility of xk, the next iterate xk+1 is set to xk, and the mesh size parameter
is decreased according to rule (2.2). The next poll center pk+1 need not be fixed to pk. These
iterations usually require more function evaluations than when an unfiltered mesh point is
found. A sensible strategy is to poll around both incumbents before decreasing the mesh
size parameter. Logically, one can declare that the first POLL step was actually a part of the
SEARCH.

A typical way in updating the mesh size parameter is to double it when a new incumbent
solution is found, otherwise to keep it constant when only an unfiltered mesh point is found,
and to cut it in half when the poll center is shown to be a mesh isolated filter point.

Our algorithm for constrained optimization is formally stated in figure 4.2. We allow
for the fact that in some applications, a set S0 of initial points may be available from solving
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similar problems, and can be used to seed the filter. Without any loss of generality we assume
that any such points, or at least the undominated ones, are on the initial mesh and that they
have been “filtered” to be consistent with our initialization step in the sense that x0 will not be
filtered by the other seed points. An easy way to assure this would be to take x0 to be the seed
point with the smallest value of hX , to break ties by taking one with the smallest objective
function value, and to make sure that the necessary directions are in D in order that all the
initial filter points are on the mesh. Of course, one must ensure that the directions satisfy the
conditions of Section 2.

A pattern search filter algorithm
• INITIALIZATION: Let F0 be the filter associated with a set of initial points S0. Let

x0 be an undominated point of F0. Fix ∆0 > 0 and set the iteration counter k to 0.
• DEFINITION OF INCUMBENT POINTS: Define (if possible)

f F
k : the least objective function value for all feasible points found so far;

hI
k > 0: the least positive constraint violation function value found so far;

f I
k : the least objective function value of the points found so far whose constraint

violation function value is equal to hI
k.

• SEARCH AND POLL ON CURRENT MESH M(Sk,∆k) (see equation (4.1)): Perform
the SEARCH and possibly the POLL steps (or only part of the steps) until an unfil-
tered trial point xk+1 is found, or when it is shown that all trial points are filtered
by Fk.

– SEARCH STEP: Evaluate hX and f on a set of trial points on the current mesh
M(Sk,∆k) (the strategy that gives the set of points is usually provided by the
user).

– POLL STEP: Evaluate hX and f on the poll sets Pk (see equation (4.3)), for a
poll center pk that satisfy equation (4.2).

• PARAMETER UPDATE: Let Sk+1 = Sk ∪{ the set of all trial points visited in the
SEARCH and POLL steps }. If the SEARCH or the POLL step produced an unfiltered
mesh point xk+1 6∈ F k, then update ∆k+1 ≥ ∆k according to rule (2.3), then update
the filter at the next step.
Otherwise, set xk+1 = xk, update ∆k+1 < ∆k according to rule (2.2), and set Fk+1 =
Fk; increase k← k +1 and go back the definition of the incumbents.

• FILTER UPDATE: Let Fk+1 be the union of Fk with all infeasible unfiltered points
(with respect to Fk) found during the SEARCH and POLL step. Remove domi-
nated points from Fk+1. Increase k← k + 1 and go back to the definition of the
incumbents.

FIG. 4.2. A pattern search filter algorithm

In pattern search algorithms, one role of the POLL step is to guarantee convergence. This
is why it is rigidly defined through the positive spanning sets Dk ⊂ D. In practice, the largest
improvements in the incumbent points are obtained in the SEARCH step (e.g., see [3, 4, 5]
where a surrogate of an expensive function is constructed). The SEARCH step is usually the
one that drives the iterates away from a local optimum. In a SEARCH implementation, it
might be a good idea to try some points that are near points of the filter. Paul Frank made the
interesting suggestion that SEARCH might include polling around the next most feasible filter
point, i.e., x ∈ Fk with the least value of hX (x) > hI . The objective here again is to attempt to
find and then explore a different part of the feasible region. This is illustrated by the example
in Section 7.4.

In the next section, we discuss the reduction of the algorithm proposed here in the ab-
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sence of nonlinear constraints to those given earlier for unconstrained and linearly constrained
problems.

4.4. Reduction of the GPS-filter method to linearly constrained optimization. Con-
sider the case where m = 0, i.e., when there are no nonlinear constraints. In [2], linear con-
straints defining X were handled by adding the indicator function to f and in the present
paper, it is added to h. The effect is the same, since in both cases the indicator function sim-
ply eliminates from consideration the infeasible points with respect to X . In both cases, the
convergence results are relative to the smoothness of h and f and not of hX and fX .

The main result of [2] was that for the limit x̂ of a refining subsequence {pk}k∈K , Clarke
derivatives are nonnegative in all the unsuccessful polling directions used infinitely often in
the subsequence. The analysis below generalizes this by identifying a large set of directions
for which Clarke derivatives are nonnegative.

4.5. Infinite refinement of the mesh. In this section, we identify a set of limit points
of the algorithm that exists even without assuming any problem smoothness. Later we will
show some optimality conditions hold at these limit points for which the problem is locally
smooth.

The convergence analysis of our algorithm is based on the standard (see [9, 14, 15, 16])
assumption that all trial points produced by the algorithm lie in a compact set. A consequence
of this is that since the mesh size parameter does not decrease when an unfiltered mesh point
is found (∆k+1 ≥ ∆k), then it follows that only finitely many consecutive unfiltered mesh
points can be generated.

We will be mainly concerned with the poll centers pk that are mesh isolated filter points
(i.e., the mesh neighbors of pk are filtered) and for which the mesh size parameter is reduced
(∆k+1 < ∆k). The proofs of the results in this subsections are omitted, even if the definition
of the mesh is slightly different. The key element required is not the mesh, but the fact that
any mesh point x ∈M(Sk,∆k) can be written as x+ ∑k

i=0 ∆iDzi for some x ∈ S0 and zi ∈ N
nD ,

for i = 0,1, . . . ,k.
Our first result is that there is a subsequence of iterations for which the mesh size pa-

rameter goes to zero. In order to prove it we require the following lemma from Torczon [26]
or Audet and Dennis [2] whose proof can be easily modified with our definition (4.1) of the
mesh.

LEMMA 4.2. The mesh size parameters ∆k are bounded above by a positive constant
independent of the iteration number k.

Combining this lemma with the assumption that all iterates lie in a compact set implies
the following result. Its proof is omitted since it is identical to that of the same result in [2].
The original proof of this, using slightly different notation can be found in Torczon [26].

LEMMA 4.3. The mesh size parameters satisfy liminf
k→+∞

∆k = 0.

Coope and Price [10] analyze mesh-based algorithms for the unconstrained and linearly
constrained problems in which instead of requiring that the SEARCH be performed on the
mesh, they assume that the limit inferior of the mesh size parameter goes to zero. This shifts
the burden from the algorithm specification to the implementation.

Since the mesh size parameter shrinks only at mesh isolated filter points, Lemma 4.3
guarantees that there are infinitely many iterations for which the poll centers are mesh isolated
filter points. Thus by compactness, the mesh isolated filter points have limit points. Moreover,
all these limit points belong to the polyhedron X . At such an iteration the entire trial set, and
in particular the poll set Pk, is filtered. Therefore, for each direction d ∈ Dk either hX (pk +
∆kd)≥ hmax, or there exists some element x in the filter Fk such that both f (pk +∆kd)≥ f (x)
and hX (pk +∆kd)≥ hX (x) or, hX (pk +∆kd) = 0 and fX (pk +∆kd)≥ f F

k .
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5. Background for optimality results. As in [2], Clarke’s [8] generalized derivatives
are the key to our convergence analysis. To use this powerful tool, we analyze the case where
the function is Lipschitz in a neighborhood of the limit point in question. Of course, there
are some optimization problems on which we would apply our algorithm where the functions
are not Lipschitz, or optimization problems where we cannot show that the functions are
Lipschitz. But this is beside the point. We show how the algorithm behaves on problems
with Lischitz functions. Another ingredient needed for optimality conditions is the contingent
cone, which generalizes the notion of tangent cone to more general constraints. The following
material is adapted from [18, 24].

DEFINITION 5.1. Let S⊂ R
n be nonempty. The cone generated by S is

cone(S) = { λs | λ≥ 0 and s ∈ S } .(5.1)

A tangent vector to S at x in the closure of S is v ∈ R
n such that there exists a sequence

{yk} of elements of S that converges to x and a sequence of positive real numbers {λk}
for which v = limk λk(yk − x). The set T (S,x) of all tangent vectors to S at x is called the
contingent cone (or sequential Bouligand tangent cone) to S at x. The polar cone of a cone
K ⊂ R

n is K◦ = {x ∈ R
n : xT v≤ 0 ,∀v ∈ K}.

For X , the contingent cone is the same as the tangent cone. The normal cone, used to
define KKT points, is less useful here than the polar cone since the normal cone in our context
may have little to do with optimality given its usual definition as the convex conic hull of the
gradients of the constraints. The polar cone of the contingent cone is more useful in this
context.

Optimality conditions for a differentiable function can be stated in terms of the cone
generated by the convex hull of a set S, i.e., the set of nonnegative linear combinations of
elements of S. We will use the standard notation co(S) for the convex hull of S, but rather
than use the induced but somewhat unwieldy notation cone(co(S)), we will use the notation
cc(S) for the convex conic hull of S. Thus, for example, to say that a set S is a positive
spanning set is to say that cc(S) = R

n.
DEFINITION 5.2. [8] Let g : R

n → R be Lipschitz near x̄ ∈ R
n. Clarke’s generalized

derivative at x̄ in the direction v ∈ R
n is

g◦(x̄;v) := limsup
y→x̄, t↓0

g(y+ tv)−g(y)
t

.

The generalized gradient of g at x̄ is the set

∂g(x̄) := {s ∈ R
n : g◦(x̄;v)≥ vT s for all v ∈ R

n}.

The generalized derivative may be obtained from the generalized gradient as follows : g◦(x̄;v)=
max{vT s : s ∈ ∂g(x̄)}.

The following alternate definition of directional derivative will be useful.
LEMMA 5.3. Let g : R

n→ R be Lipschitz near x̄ ∈ R
n. Then,

g◦(x̄;v) = limsup
y→x̄, w→v, t↓0

g(y+ tw)−g(y)
t

.

Proof. Let L be a Lipschitz constant for g near x̄. Then

limsup
y→x̄, w→v, t↓0

g(y+tw)−g(y)
t = limsup

y→x̄, w→v, t↓0

g(y+tv)−g(y)
t + g(y+tw)−g(y+tv)

t

≤ limsup
y→x̄, w→v, t↓0

g(y+tv)−g(y)
t +L‖w− v‖= g◦(x̄;v) .
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On the other hand, setting w = v gives a lower bound on the limit supremum.

limsup
y→x̄, w→v, t↓0

g(y+tw)−g(y)
t ≥ limsup

y→x̄, t↓0

g(y+tv)−g(y)
t = g◦(x̄;v) .

In order to show that the Clarke generalized directional derivative is nonnegative at a
point x̄ ∈R

n in the direction v ∈R
n, it suffices to generate three subsequences: {yk} converg-

ing to x̄, {wk} converging to v, and {tk} converging to zero from above in such a way that
g(yk)≤ g(yk + tkwk) for infinitely many k’s.

5.1. Clarke’s derivatives at limit points. In this subsection, we develop some results
about the directions in which the Clarke derivatives indicate optimality. To save space, we
prove our preliminary results for a function g, which can be either h or f . Also, for any
x̄ ∈ R

n, we define Γg(x̄) to be the closure of {x ∈ R
n : g(x)≥ g(x̄)}.

PROPOSITION 5.4. Let S⊂ R
n be nonempty, and g be defined on an open superset of S,

and let g be Lipschitz near x̄ ∈ S. Necessary conditions for x̄ to be a local minimizer of g on
S are:

• g◦(x̄;v)≥ 0 for every v ∈ T (S, x̄);
• If g has a Fréchet derivative ∇g(x̄) at x̄, then ∇g(x̄)T v≥ 0 for every v ∈ co(T (S, x̄)),

and so −∇g(x̄) ∈ co(T (S, x̄))◦. Thus, if T (S, x̄) contains a positive spanning set,
then co(T (S, x̄))◦ = {0} and ∇g(x̂) = 0.

Proof. Let S,g and x̄ be as in the statement, and let v be in T (S; x̄). Then, there exists
a sequence {xk} of elements of S converging to the local minimizer x̄ of g on S, and some
positive sequence {λk} such that v = limk λk(xk− x̄). If v = 0, the result is trivial. If v 6= 0,
then limk

1
λk

= 0.

Now, take yk = x̄, wk = λk(xk− x̄), and tk = 1
λk

; we see that

g◦(x̄;v) ≥ limsup
k

g(yk + tkwk)−g(yk)

tk
= limsup

k
λk[g(xk)−g(x̄)] .

But, since xk ∈ S, {xk} converges to x̄, and x̄ is a local minimizer of g on S, we have that for
sufficiently large k, λk[g(xk)−g(x̄)] is nonnegative and the first result follows.

Now assume that ∇g(x̄) is the Fréchet derivative at x̄. Then by Theorem 4.14 of [18],
∇g(x̄)T v ≥ 0 for every v ∈ T (S,x). Let v ∈ co(T (S, x̄)). Then, there is a nonnegative co-
efficient vector α such that v = ∑i αisi for some si ∈ T (S, x̄). The second result follows
from the linearity of the inner product and the definition of polar cone. If T (S, x̄) contains
a positive spanning set, then co(T (S, x̄)) = R

n, and therefore, for every v 6= 0, we have that
v,−v ∈ T (S, x̄), and so ∇g(x̄)T v≥ 0 and ∇g(x̄)T (−v)≥ 0, which completes the proof.

The approach we now give for generating directions in which Clarke derivatives are
nonnegative generalizes the one presented in [2]. Indeed, the following result will be useful in
enlarging the set of directions, and in addition, it relates the generalized directional derivative
to the class of iterative methods that require decrease in some merit function at each iteration.
We prove this more general result first.

LEMMA 5.5. Let g be Lipschitz near the limit x̄ of a sequence {yk} for which the corre-
sponding values g(yk) are monotone nonincreasing, and for which yk 6= x̄ for all k. If v is any

limit point of the sequence
{

yk−x̄
‖yk−x̄‖

}

, then v ∈ T (Γg(x̄), x̄) and g◦(x̄;v)≥ 0.

Proof. Let {yk} and x̄ be as in the above statement. There is at least one limit point v of
{

yk−x̄
‖yk−x̄‖

}

since the unit ball is compact. Setting λk = 1
‖yk−x̄‖ in Definition 5.1 yields trivially
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that v ∈ T (Γg(x̄), x̄). Moreover, Lemma 5.3 implies

g◦(x̄;v) = limsup
y→x̄, w→v, t↓0

g(y+ tw)−g(y)
t

≥ limsup
k→∞

g
(

x̄+‖yk− x̄‖ yk−x̄
‖yk−x̄‖

)

−g(x̄)

‖yk− x̄‖ = limsup
k→∞

g(yk)−g(x̄)
‖yk− x̄‖ ≥ 0 .

5.2. Choice of the constraint violation norm. The constraint violation function h2(x)=
‖C(x)+‖2

2 will give our best results since it is continuously differentiable whenever C is (see
Dennis, El Alem and Williamson [11] for a compact formulation of ∇h2). The constraint
violation function h1(x) = ‖C(x)+‖1 is another common choice, at least for SQP. Thus, the
question arises as to the differentiability of h1. The answer, which implies that it is rarely
strictly differentiable at x̂, is given by the following result. Recall that a function g is said to
be strictly differentiable [19, 8] at x if limy→x̂,t↓0

g(y+tv)−g(y)
t = ∇g(x̂)T v for all v ∈ R

n, and g
is said to be regular [8] at x if for all v∈R

n, the one-sided directional derivative g′(x,v) in the
direction v exists and coincides with g◦(x;v). In Section 7.2 we will see an example showing
the cost of this lack of smoothness.

PROPOSITION 5.6. If C is regular at every x, then so is h1. Let I(x) = {i : ci(x) > 0} and
A(x) = {i : ci(x) = 0} be the inactive and active sets at x. Then the generalized gradients are
related by

∂h1(x) = ∑
i∈I(x)

∂ci(x)+
{

∑
i∈A(x)

γiζi : γi ∈ [0,1],ζi ∈ ∂ci(x), i ∈ A(x)
}

.

The generalized directional derivatives of h1 and C in a direction v at x are related by

h◦1(x;v) = ∑
i∈I(x)

c◦i (x;v)+ ∑
i∈A(x)

(c◦i (x;v))+.

Thus, if C is strictly differentiable at x, then

h◦1(x;v) = ∑
i∈I(x)

∇ci(x)T v+ ∑
i∈A(x)

(∇ci(x)T v)+.

Proof. The proof follows from various results in [8], and some simple observations.
Clarke’s Propositions 2.3.12 and 2.3.6 guarantee that ci(x)+ thus h1(x) are regular at x when-
ever ci(x) is.

The third corollary to Proposition 2.3.3 implies that ∂h1(x) = ∑i ∂ci(x)+, where this
means all possible sums of an element from each ∂ci(x)+. Propositions 2.3.12 implies that

∂ci(x)+ =







∂ci(x) if ci(x) > 0,

co{∂ci(x),∂0(x)}= {γiζi : γi ∈ [0,1],ζi ∈ ∂ci(x)} if ci(x) = 0,

∂0(x) = {0} if ci(x) < 0.

The generalized directional derivative in any direction v can be written as: h◦1(x;v) =

∑i(ci(x;v)+)◦. If ci(x) > 0 then (ci(x;v)+)◦ = max{vT ζ : ζ ∈ ∂ci(x)}= c◦i (x;v). If ci(x) < 0
then (ci(x;v)+)◦ = max{vT ζ : ζ ∈ ∂0(x)}= 0. And if ci(x) = 0, then
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(ci(x;v)+)◦ = max{vT η : η ∈ ∂ci(x)+}
= max

{

vT η : η ∈ {γiζi : γi ∈ [0,1],ζi ∈ ∂ci(x)}
}

=

{

0 if max{vT ζi ∈ ∂ci(x)} ≤ 0
max{vT ζi ∈ ∂ci(x)} otherwise

= (max{vT ζi ∈ ∂ci(x)})+ = (c◦i (x;v))+.

The last part of the result follows by definition of strict differentiability.
Note that the above result could be slightly rewritten by using one-sided directional

derivatives instead of generalized directional derivatives. Indeed, if C is regular at x, then
c◦i (x;v) coincides with the one-sided directional derivative c′i(x;v), and h◦1(x;v) coincides with
h′1(x;v).

5.3. Refining sequences. The purpose of the following definition is to identify a limit of
trial points and as many directions as possible for which Clarke’s derivatives are nonnegative
at that limit. We will make the convention, which is implied by the algorithm, that for pk
to be an active poll center implies that polling around pk was at least initiated at iteration
k, although function values at all the corresponding poll set may not have been computed
because polling is allowed to stop if some poll step yields an improved mesh point.

DEFINITION 5.7. A convergent subsequence of active poll centers {pk}k∈K (for some
subset of indices K) is said to be a refining subsequence if limk∈K ∆k = 0. The set of refining
directions for g associated with a refining subsequence {pk}k∈K is

Rg(K) = {v ∈ R
n: v = ζ−ξ 6= 0 and −∞ < g(pk +∆kξ)≤ g(pk +∆kζ) < ∞

and pk +∆kζ, pk +∆kξ ∈Vk for infinitely many k ∈ K},

where Vk ⊂ Pk are the members of the poll set visited by GPS. The set of limit directions for g
associated with the limit x̂ of a refining subsequence {pk}k∈K is

Lg(K) = {v ∈ R
n: ∃{yk}k∈K ⊂Vk \{x̂} such that lim

k∈K
yk = x̂, and g(yk)≥ g(yk′)

∀k′ > k ∈ K, and v is a limit point of
{

yk− x̂
‖yk− x̂‖

}

k∈K
}.

Figure 5.1 illustrates an example of refining directions for a refining subsequence pki :
The subsequence {pk}k∈K converges to x̂ and has six associated directions, represented by
vectors, and four limit directions,represented by dotted lines. Note that in the above definition,
if ξ = 0 then the refining direction v = ζ−ξ belongs to Dk. Thus, all the directions in infinitely
many Dk where polling was unsuccessful in finding a better point are refining directions.
Also, if the function is constant in the refining direction v ∈ Rg(K), then −v also will be a
refining direction.

We now show the existence of refining subsequences and directions, but because the
limit directions depend on whether g is f or h, we postpone their existence results for the next
section.

LEMMA 5.8. There exists at least one refining subsequence composed of mesh isolated
filter points. Let {pk}k∈K be a refining subsequence. If there exists some tk ∈ Vk with −∞ <

g(tk) < ∞ for infinitely many k in K, then the set of refining directions Rg(K) is nonempty.
Proof. Lemma 4.3 guarantees that there exists a subsequence of iterations whose mesh

size parameter goes to zero. The mesh size parameter ∆k only decreases when the POLL step
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FIG. 5.1. An example of refining and limit directions. The six refining directions (represented by vectors) use
the fact that g(pki +∆ki d

1) > g(pki +∆ki d
2) > g(pki +∆ki d

3) > g(pki ). The four limit directions are represented by
dotted lines.

shows that all trial points in Pk are filtered. Moreover, the assumption that all trial points
(thus all active poll centers) are in a compact set implies that one such subsequence has a
limit point. Thus, there exists a refining subsequence consisting exclusively of mesh isolated
poll centers.

Let pk and tk be as in the above statement. The second result follows from the fact that
the directions tk−pk

∆k
belong to the finite set D, and therefore there is a direction d ∈ D used

infinitely often. By definition, either d or −d (or both) belongs to Rg(K).
We now show that the generalized directional derivative is nonnegative at limit points of

refining subsequences for all associated refining and limit directions for g.
THEOREM 5.9. Let g be Lipschitz near the limit point x̂ of a refining subsequence

{pk}k∈K . Then g satisfies optimality conditions at x̂ on cone(Rg(K)∪ Lg(K)) in the sense
that if v ∈ cone(Rg(K)∪Lg(K)) then g◦(x̂;v)≥ 0. Moreover, Lg(K)⊂ T (Γg(x̂), x̂).

Proof. Let g be Lipschitz near the limit point x̂ of a refining subsequence {pk}k∈K . If
v = ζ− ξ 6= 0 belongs to Rg(K) for some ζ,ξ ∈ R

n, then by definition of the generalized
directional derivative we have that:

g◦(x̂;v) ≥ limsup
k∈K

g((pk +∆kξ)+∆kd)−g(pk +∆kξ)

∆k
≥ 0.

The same result on cone(Rg(K)∪Lg(K)) follows from the positive homogeneity of the Clarke
generalized directional derivative. If v belongs to Lg(K) for some subsequence {yk}k∈K ⊂
Vk \{x̂} converging to x̂, then Lemma 5.5 completes the proof.

The previous theorem implies that one of the advantages of using a large number of
positive spanning directions in the algorithm is that the set of directions for which Clarke’s
generalized derivatives are shown to be nonnegative will be larger.

The following corollary strengthens Theorem 5.9 when g is strictly differentiable at the



A PATTERN SEARCH FILTER ALGORITHM June 12, 2003 17

limit point x̂ Assuming that g is strictly differentiable at x̂ as defined in Section 5.2 is equiv-
alent in finite dimensions to assuming that g is Lipschitz near x̂, Fréchet differentiable and
regular at x̂ [8].

COROLLARY 5.10. If g is strictly differentiable at x̂, then ∇g(x̂)T v ≥ 0 for every v ∈
cc(Rg(K)∪Lg(K)) and thus, if Rg(K)∪Lg(K) contains a positive spanning set, then ∇g(x̂) =
0.

Proof. Assume that ∇g(x̂) is the Fréchet derivative at x̂. Then Theorem 5.9 ensures
that ∇g(x̂)T v ≥ 0 for every v ∈ Rg(K)∪Lg(K). Let v ∈ cc(Rg(K)∪Lg(K)). Then, there is a
nonnegative coefficient vector α such that v = ∑i αisi for some si ∈ Rg(K)∪Lg(K). The first
result follows from the linearity of the inner product.

If Rg(K)∪ Lg(K) contains a positive spanning set, then cc(Rg(K)∪ Lg(K)) = R
n, and

therefore, for every v 6= 0, we have that v,−v ∈ Rg(K)∪ Lg(K), and so ∇g(x̄)T v ≥ 0 and
∇g(x̄)T (−v)≥ 0, which completes the proof.

6. Optimality conditions for the Filter-GPS method. We will continue with results
that only consider the behavior of h, and then complete our results by analyzing the effect of
the filter on the objective function f .

6.1. Results for the constraint violation function. The algorithm definition gives pri-
ority to feasibility, as expressed by the constraint violation function, over minimizing the
objective function. A consequence of this is that the optimality conditions guaranteed by
the algorithm are stronger for h, i.e., achieving feasibility, than for they are for achieving
constrained optimality. Indeed, in the absence of the assumption of linearly independent con-
straint gradients, our feasibility results are what one would prove for standard SQP methods
– that we obtain a stationary point of the `2 norm of the constraint violations.

A first obvious comment is that h(pk) = hX (pk) for every poll center pk since trial points
violating some linear constraints are rejected. Therefore, any limit of poll centers belongs to
X . So the analysis can be done in terms of h instead of hX . Another observation is that, by
definition, if h(x̂) = 0 then x̂ is a global minimizer for h. Furthermore, any limit point of a
sequence of feasible points would be feasible if h were lower semicontinuous there, or if the
feasible region is closed. However, it is possible for a sequence of least infeasible poll centers
to converge to an infeasible point. We will therefore concentrate on limit points of infeasible
mesh isolated poll centers.

Before presenting results that assume local Lipschitz continuity, we prove the following
result, which shows in particular that if any limit point of least infeasible poll centers is
feasible and if h is continuous there, then all limit points at which h is lower semicontinuous
are also feasible. It also provides a way to identify some limit directions in Lh(K).

THEOREM 6.1. Let {pI
k}k∈K be a convergent subsequence of least infeasible poll cen-

ters. Then limk h(pI
k) exists, and if h is lower semicontinuous at any limit point x̄ of {pI

k},
then limk h(pI

k) ≥ h(x̄) ≥ 0. Every limit point of least infeasible poll centers at which h is
continuous has the same constraint violation function value. Furthermore, if h is Lipschitz

near any x̄, then h◦(x̄;v) ≥ 0 for any limit direction v of
{

pI
k−x̄

‖pI
k−x̄‖

}

. In addition, each limit

direction satisfies v ∈ T (Γh(x̄), x̄).
Proof. The sequence {h(pI

k)} is convergent because it is a nonincreasing sequence of
positive numbers. Of course, for any subsequence of {pI

k}, the corresponding h values have
the same limit. Thus, if h is lower semicontinuous at x̄, we know that for any subsequence
{pk}k∈K of the iteration sequence that converges to x̄,

lim
k

h(pI
k) = lim

k∈K
h(pI

k) = liminf
k∈K

h(pI
k) ≥ h(x̄) ≥ 0 .
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If h is continuous at some limit points of infeasible poll centers, then the same argument
shows that all such limit points have the same value of the constraint violation function. Thus,
if any such limit point is feasible, they all are feasible.

The rest of the proof follows by noticing that v ∈ Lh(K), and by applying Theorem 5.9.
The next result guarantees some nonsmooth first order optimality conditions. It shows

that Clarke derivatives for h are nonnegative in a subset of refining directions whose convex
conic hull is the tangent cone to X .

PROPOSITION 6.2. Let x̂ be the limit of a refining subsequence composed of mesh iso-
lated filter points {pk}k∈K , and assume that the rule for selecting Dk conforms to X for an
ε > 0. If h is Lipschitz near x̂, then h◦(x̂;v) ≥ 0 for any direction v in a set of directions
D′ ⊂ Rh(K) satisfying cc(D′) = T (X , x̂).

Proof. Let {pk}k∈K ,ε and x̂ be as in the statement of the result. When h(x̂) = 0, h◦(x̂;v)≥
0 for any v ∈ R

n, so assume that h(x̂) > 0. Since the rule for selecting Dk conforms to X for
an ε > 0, then there exists a subset of directions D′ of D such that cc(D′) = T (X , x̂), and for
any v ∈ D′ and sufficiently large k ∈ K, pk + ∆kv ∈ Pk ∪X and h(pk + ∆kv) > 0. However,
since the poll centers are mesh isolated filter points, it follows that h(pk +∆kv)≥ h(pk), and
therefore v belongs to Rh(K). Theorem 5.9 completes the proof.

A consequence of this result is that if h is strictly differentiable at the limit point of a
refining subsequence composed of mesh isolated filter points, then standard first order opti-
mality conditions for h are satisfied.

COROLLARY 6.3. Let x̂ be the limit of a refining subsequence composed of mesh isolated
filter points {pk}k∈K , and assume that the rule for selecting Dk conforms to X for an ε > 0.
If h is strictly differentiable at x̂, then ∇h(x̂)T v≥ 0 for every v in T (X , x̂).

Proof. The result is a direct consequence of Corollary 5.10 and Proposition 6.2.

6.2. Results for the objective function. We have shown above that the limit point for a
refining subsequence generated by the algorithm satisfies local optimality conditions for the
constraint violation function. We now derive some results for the objective function. The first
result proposes a way to identify some limit directions in L f (K).

PROPOSITION 6.4. Let {pF
k }k∈K be a convergent subsequence of feasible poll centers.

If f is lower semicontinuous at x̄, then limk f (pk
k) exists and is greater than or equal to f (x̄).

The set of such limit points at which f is continuous all have the same objective function

value. Furthermore, if f is Lipschitz near any x̄, then any limit direction v of
{

pF
k −x̄

‖pF
k −x̄‖

}

is

such that f ◦(x̄;v)≥ 0 and v ∈ T (Ω, x̄)∩T (Γ f (x̄), x̄).
Proof. Let {pF

k }k∈K and x̄ be as in the above statement. The subsequence f (pF
k )k∈K is

monotone nonincreasing and bounded below by the finite value f (x̄), and therefore it con-
verges.

Since pF
k ∈ Ω for every k ∈ K, it follows by definition of the contingent cone that

v ∈ T (Ω, x̄). The rest of the proof follows by noticing that v ∈ L f (K), and by applying
Theorem 5.9.

The next pair of results guarantees some nonsmooth first order optimality conditions
related to the cone tangent to X . They are similar to the first order optimality results for
h, Proposition 6.2 and Corollary 6.3, except that they require the limit point to be strictly
feasible with respect to Ω. Basically, these results show that when the nonlinear constraints
are not binding, the use of the filter does not interfere with the linearly constrained results.

PROPOSITION 6.5. Let x̂ be the limit of a refining subsequence composed of mesh iso-
lated filter points {pk}k∈K , and assume that the rule for selecting Dk conforms to X for an
ε > 0. If f is Lipschitz near x̂, and if x̂ is strictly feasible with respect to Ω, then f ◦(x̂;v)≥ 0
for any direction v in a set of directions D′ ⊂ Rh(K) satisfying cc(D′) = T (X , x̂).
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Proof. Let {pk}k∈K ,ε and x̂ be as in the statement of the result. Since the rule for
selecting Dk conforms to X for an ε > 0, then there exists a subset of directions D′ of D such
that cc(D′) = T (X , x̂), and for any v ∈D′ and sufficiently large k ∈ K, pk +∆kv ∈ Pk∪X ∪Ω.
However, since the poll centers are mesh isolated filter points, it follows that f (pk + ∆kv) ≥
f (pk), and therefore v belongs to R f (K). Theorem 5.9 completes the proof.

The following corollary to this result shows standard first order optimality conditions for
f on X under the additional assumption of strict differentiability.

COROLLARY 6.6. Let x̂ be the limit of a refining subsequence composed of mesh isolated
filter points {pk}k∈K , and assume that the rule for selecting Dk conforms to X for an ε > 0.
If f has a strict derivative ∇ f (x̂) at x̂, and if x̂ is strictly feasible with respect to Ω, then
∇ f (x̂)T v≥ 0 for every v in T (X , x̂).

Proof. The result is a direct consequence of Corollary 5.10 and Proposition 6.5.
Note that since it is assumed in Corollary 6.6 that x̂ is feasible with respect to Ω, and

since the algorithm reduces to the one in [22, 2] in the absence of general constraints, the
proof of the corollary also follows from a result in [2].

Our next result does not assume strict feasibility of the limit point. It is a corollary
of Corollary 5.10. It gives conditions for the limit point of a refining sequence to satisfy
optimality conditions on problem (1.1). It is that the convex conic hull of the union of the
refining and the limit directions contains the contingent cone for the feasible region at x̂. An
interesting aside is that this condition can be met without any feasible descent directions in
any poll set. In the simple linearly constrained case, this is implied by ensuring that the
polling directions conform to the boundary of X , but here, the corresponding assumption that
the polling directions for a refining sequence generate the contingent cone for the feasible
region at x̂ is not as constructive. This result is illustrated on the three examples of Section 7.

PROPOSITION 6.7. Let x̂ be the limit point of a refining subsequence {pk}k∈K , If f
has a strict derivative ∇ f (x̂) at x̂, then −∇ f (x̂) belongs to the polar C◦f of C f = cc(R f (K)∪
L f (K)), and so x̂ satisfies the optimality conditions of Proposition 5.10 for f on C f . Moreover,
if T (Ω∩ X , x̂) ⊂ C f , then x̂ satisfies the optimality conditions of Corollary 5.10 for f on
Problem (1.1).

Proof. Let x̂, f and C f be as in the above statement. Corollary 5.10 guarantees that
∇ f (x̂)T v ≥ 0 for any vector v ∈ C f . The results follows from the definition of polarity:
In general −∇ f (x̂) ∈ C◦f = {u ∈ R

n : uT v ≤ 0 ∀v ∈ C f }. If C f ⊇ T (Ω∩X , x̂), then C◦f ⊂
T ◦(Ω∩X , x̂), and the proof is complete.

REMARK: Notice that under the assumption that the contingent cone generators of the
nonlinear constraints binding at x̂ belong to the set of refining or limit directions (as will
be the case for linear constraints and conforming directions, see Definition 4.1), then the
preceding result reduces to the corresponding result from [2, 22]. This is because in that case
the contingent cone is the tangent cone, and the polar of the contingent cone is the normal
cone so x̂ is a KKT point.

By using a filter based step acceptance criterion, we have overcome a difficulty in ap-
plying pattern search algorithms to constrained optimization. Specifically, that the objective
function descent directions in the positive spanning set D may be infeasible. Lewis and Tor-
czon [20] give an example where a nonfilter version of the pattern search algorithm stalls
(i.e., all subsequent iterates are the same mesh isolated filter point), at a point containing a
strictly feasible descent direction. The following result shows that, under assumptions on
the smoothness of the functions but regardless of the choice of positive spanning set, our al-
gorithm will eventually find an unfiltered mesh point, except when ∇ f (pk) = 0. This is an
essential ingredient of any method with ambitions to find more than a single local constrained
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minimizer.
PROPOSITION 6.8. If h and f are both strictly differentiable at the poll center pk, and

if ∇ f (pk) 6= 0, then there cannot be infinitely many consecutive iterations where pk is a mesh
isolated filter point.

Proof. Let h and f be strictly differentiable at pk where ∇ f (pk) 6= 0. Assume that
there are infinitely many consecutive iterations where pk is a mesh isolated filter point. Let
d be a direction used infinitely often in the (constant) subsequence of poll centers such that
∇ f (pk)

T d < 0.
Since the function h is strictly differentiable at pk, there exists an ε > 0 such that one of

the two conditions is satisfied: either hX (pk +∆d)≤ hX (pk) < hmax or hX (pk +∆d) > hX (pk)
for all 0 < ∆ < ε.

If the first condition is satisfied, then for ∆k < ε the POLL step will find an unfiltered
mesh point. This is a contradiction. If the second condition is satisfied, then let h̃ be the
smallest value of {hX (x) : hX (x) > hX (pk),x ∈ Fk}∪{hmax}, and let f̃ be the corresponding
objective function value, i.e., either f̃ = f (x̃) for some vector x̃ ∈ Fk that satisfies hX (x̃) = h̃,
or f̃ = −∞ in the case that h̃ = hmax. It follows that h̃ > hX (pk) and f̃ < f (pk). Therefore,
whenever ∆k < ε is small enough, the following inequalities hold: hX (pk) < hX (pk +∆kd) < h̃
and f̃ < f (pk +∆kd) < f (pk), thus the trial mesh point is unfiltered. This is a contradiction.

7. Illustration of our results. We now illustrate the behavior of our algorithm on three
test examples and on a real engineering problem. The first test example is due to Lewis and
Torczon [20]. Unlike the barrier approach in [20], the filter approach can converge even with
a badly chosen positive spanning set.

The second example justifies our choice of the squared `2 norm over the `1 norm in
the definition of the constraint violation function. The non-smoothness of the latter may not
provide descent on h1 in some of the poll directions for which h2 does descend. The example
shows that since h1 does not allow movement, using it can result in stalling at an infeasible
point.

The third example shows the limitations of our results; there is more left to do. This
example uses the algorithm’s flexibility as a loophole to avoid a desirable outcome. Even
with the squared `2 norm, it is still possible to choose the positive spanning sets, and to be
unlucky, in a way that there is a polling direction which is a feasible descent direction for the
objective function f from the limit point x̂. This does not contradict our results, but it does
show their limitations without a suitable SEARCH scheme.

The last example is a wing planform design problem from Boeing for a different airplane
than the two airplanes used to generate the results reported in [3].

7.1. Example of Lewis and Torczon. Consider the linear program [20]

min
x=(a,b)T

−a−2b

s.t. 0≤ a≤ 1
b≤ 0.

The optimal solution is x̂ = (1,0)T . Let us apply our algorithm with initial point x0 = (0,0)T

and initial mesh size parameter ∆0 = 1 and with a single positive spanning matrix Dk = D
constructed with the four directions ±(1,1)T and ±(1,−1)T . We will not use any SEARCH
step for this example. It is pointed out in [20] that all iterations of a “barrier” pattern search
algorithm that assigns an objective function value of +∞ to infeasible points but does not take
into consideration the geometry of the feasible region, remain at the origin since the polling
directions that yield decrease in the objective function are infeasible.
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Suppose that the constraints are given as black boxes, and that the algorithm is not aware
that they are linear. Therefore X = R

2 and for any x ∈ R
2 the value C(x), and thus h(x) =

hX (x) can be computed.

One might consider using the unconstrained GPS on an `1 exact penalty function for this
problem. It turns out that for any penalty constant greater than or equal to 3, the algorithm
with the same starting data never moves from the origin. The penalty constant must be greater
than 2 for the problem to have the same solution, so the penalty function approach is not useful
here.

Our filter algorithm, using the above mentioned spanning set converges to the optimal
solution. Mesh directions that conform to the boundary of the feasible region cannot be
identified. Figure 7.1 displays the first few iterations. The shaded area is the feasible region.
The poll centers are underlined, and the functions values are displayed between brackets:
[h(x), f (x)]. The points in the poll set are joined to the poll center by dotted lines.
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FIG. 7.1. First iterations on example from Lewis and Torczon.

Figure 7.1(a) illustrates the iterations for which ∆k = 1. Starting at x0 = p0 = (0,0)T the
algorithm evaluates both functions at ±(1,1)T and ±(1,−1)T . Only the trial point (1,−1)T

is feasible; it is however dominated by x0. The point (1,1)T dominates the two other trial
points and is unfiltered.

Let x1 = p1 = (1,1)T . The functions are evaluated at the four points around p1 and two
unfiltered points are found: x2 = (0,2)T and (2,2)T . Even if an unfiltered mesh point was
found, the poll center p2 remains at p1. Polling around p2 yields filtered points, thus p2 is
a mesh isolated filter point. Figure 7.2 displays the filters corresponding to the iterates in
Figure 7.1. Figure 7.1(b) starts at iteration 3 with p3 = (1,1)T and ∆3 = 1

2 . Two consecutive
iterations where an unfiltered mesh point is found lead to p4 = ( 3

2 , 1
2 )T then p5 = (1,0)T ,

which is the optimal solution.

However, since the gradient is nonzero at this point, Proposition 6.8 ensures that polling
around this point will eventually produce an unfiltered mesh point. Indeed, as shown in
Figure 7.1(c), iteration 5 produces a mesh isolated filter point, but iteration 6 generates an
unfiltered mesh point, which is a new infeasible incumbent with minimal constraint violation.
For this example, the limit point is feasible, and so it is a global optimizer for the constraint
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FIG. 7.2. Filter for the example from Lewis and Torczon.

violation function. The set of refining and limit directions for f are

R f (K) =

{[

−1
−1

]

,
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1
−1

]

,
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]

,
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1√
2
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]

,
1√
2

[

1
−1

]}

.

The polar of the cone spanned by the refining and limit directions of f is spanned by {(1,1)T ,

(0,1)T}, and indeed contains −∇ f (1,0) = (1,2)T (as stated by Proposition 6.7). Moreover,
non-negative combinations of the last two directions of R f (K) span the contingent cone to
the constraints, and therefore the solution satisfies the KKT conditions.

REMARK: Observe that the choice of the poll centers is also important to the quality
of the limit points the algorithm finds. Indeed, in this example, if one were to always take
the current poll center to be the best feasible incumbent, then the refining sequence will have
every term equal to x0. C f is again spanned by the same set of directions R f (K).

Of course, continuing to poll around an unchanging feasible incumbent is a bad idea
since it ignores the flexibility of the filter method by reducing it to the barrier method. A
better poll center selection strategy could be to alternate between the two incumbents every
time the POLL step detects a mesh isolated filter point. Polling around the infeasible one with
minimal constraint violation is especially interesting when f I is less than f F since it might
move the iterates away from a local optimum, or toward a more interesting part of the feasible
region. That way, there will be infinitely many poll steps around both types of incumbents. It
is also worthwhile to change the positive spanning set to enrich the set of refining directions
for both h and f . The flexibility of our theory ensures that such heuristics can be part of a
rigorously convergent algorithm.

7.2. Choice of the constraint violation norm. The choice of the norm in the definition
of the constraint violation function h(x) = ‖C(x)+‖ affects the convergence behavior. The
example presented here complements the theoretical results of section 5.2. We prefer the
squared `2 norm over the `1 norm since it is differentiable whenever the constraint function C
is (see [11] for an explicit formulation of the gradient). This means that if there is a descent
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direction, then a positive spanning set will detect it with the `2 norm, but `1 might miss it (see
Corollary 6.3). This is illustrated in the following simple linear program

min
x=(a,b)T

b

s.t. −b≤ 3a≤ b
b≥ 1

with `1 constraint violation function h1(a,b) = max(3a−b,0)+max(−3a−b,0)+max(1−
b,0).

Let the algorithm start at the infeasible point x0 = p0 = (0,0)T , and let the positive
spanning set be D = {(1,1)T ,(1,−1)T ,(0,−1)T}. The iterates and the filter are depicted in
Figure 7.3.

Legend: [h1(x), f (x)]
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FIG. 7.3. The algorithm stalls with the `1 norm.

Every even iteration k produces an unfiltered mesh point that does not improve any of
the incumbents: The trial point xk+1 = pk + ∆k(1,1)T is unfiltered by Fk. Every odd iter-
ation confirms that the poll center is a mesh isolated filter point: The three trial points are
filtered since pk+1 = pk = (0,0)T . Therefore, the mesh size parameter is reduced at each odd
iteration.

The sequence of poll centers stalls at the infeasible point x̂ = (0,0)T . This means that the
non-differentiability of h1 hides the descent directions for the constraint violation function.
It also means that this is another example where the unconstrained GPS algorithm applied
to the `1 exact penalty function fails as a solution approach. However, as guaranteed by
Theorem 5.9, h◦(x̂,v) is nonnegative for the positive spanning directions in D as well as for
other refining and limit directions for h:

Rh(K) =

{[

1
1

]

,

[

−1
1

]

,

[

0
−1

]

,

[

1
−2

]

,

[

−1
−2

]

,

[

1
0

]

,

[

−1
0

]}

Lh(K) =

{

1√
2

[

1
1

]

,
1√
2

[

−1
1

]}

.

The sets of refining and limit directions for f are

R f (K) =

{[

1
1

]

,

[

−1
1

]

,

[

0
1

]

,

[

−1
2

]

,

[

1
2

]

,

[

1
0

]

,

[

−1
0

]}

L f (K) =

{

1√
2

[

1
1

]

,
1√
2

[

−1
1

]}

.



24 CHARLES AUDET AND J.E. DENNIS Jr. June 12, 2003

The polar of the cone spanned by the refining and limit directions for f reduces to the negative
gradient of f : {(0,−1)T}.

REMARK: If the squared `2 norm is used for h instead of `1, then the poll center moves
away from (0,0) to (∆k,∆k)

T as soon as the mesh size parameter drops below 2
3 since 0 <

h(∆k,∆k) < 1 whenever 0 < ∆k < 2
3 . The set of refining and limit directions for f are the

same as above but the algorithm converges to a global optimal solution.

7.3. Illustration of the limitation of the results. Consider the problem

min
x=(a,b)T

b

s.t. a(1−a)−b≤ 0.

The algorithmic strategies described below are such that the algorithm goes through infinitely
many consecutive cycles of three iterations, and the sequence of iterates converge to a feasible
limit point containing a feasible descent direction used infinitely often by the iterates. The
first iteration of each cycle improves the feasible incumbent, the second one improves the
least infeasible incumbent, and the last one produces a mesh isolated filter point. We admit
that the flexibility in the choice of polling directions is exploited to lead to a weak result, but
our point is that it can happen.

The trial points generated during cycle ` are summarized in Table 7.1. The algorithm
does not perform any SEARCH, and complete polling is always performed. The table also
displays the positive spanning directions used at each POLL step. The initial points in cycle
` = 1 are p0 = xI = ( 1

4 ,0)T and xF = (0,1)T , and the initial mesh size parameter is ∆0 = 1
8 .

TABLE 7.1
Description of the three iterates of cycle ` with initial incumbents xF =

(

0, 1
2`+1

)T
and xI =

(

1
2`+1 ,0

)T
and

function values [h(xF ), f (xF )] =
[

0, 1
2`+1

]

and [h(xI), f (xI)] =
[

2`+1−1
4`+1 ,0

]

.

Mesh Poll Poll Trial

Size Center Dirs Points Comments

(∆k) (pk) [h, f ] (Dk) [h, f ]

(-2,1)
(

0, 1
2`+2

) [

0, 1
2`+2

]

xF is improved

1
2`+2

(

1
2`+1 ,0

) [

2`+1−1
4`+1 ,0

]

(2,0)
(

1
2` ,0

) [

2`−1
4` ,0

]

filtered by poll center

(0,-1)
(

1
2`+1 , −1

2`+2

) [

3×2`−1
4`+1 , −1

2`+2

]

unfiltered

(0, -2)
(

0, −1
2`+2

) [

1
2`+2 , −1

2`+2

]

unfiltered

1
2`+2

(

0, 1
2`+2

) [

0, 1
2`+2

]

(1,-1)
(

1
2`+2 ,0

) [

2`+2−1
4`+2 ,0

]

xI is improved

(-1,2)
(

−1
2`+2 , 3

2`+2

) [

0, 3
2`+2

]

filtered by poll center

(1,0)
(

1
2`+1 ,0

) [

2`+1−1
4`+1 ,0

]

already in filter

1
2`+2

(

1
2`+2 ,0

) [

2`+2−1
4`+2 ,0

]

(-1,1)
(

0, 1
2`+2

) [

0, 1
2`+2

]

already in filter

(-1,-1)
(

0, −1
2`+2

) [

1
2`+2 , −1

2`+2

]

already in filter

Figure 7.4 displays the first cycle (polling around the poll centers p0, p1 and p2) and
the corresponding filter. Cycle 1 terminates with a mesh isolated filter point, and cycle 2
is initiated at p3 = ( 1

8 ,0)T with ∆3 = 1
16 . More generally, cycle ` terminates with a mesh

isolated filter point. The mesh size parameter is divided by 2, and cycle `+1 starts.
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FIG. 7.4. The first cycle.

All trial points including the sequence of mesh isolated filtered points, i.e., the iterates
corresponding to the third step of the cycles, converge to the feasible point x̂ = (0,0)T . There
are no other limit points. The results of Section 6.1 concerning the constraint violation func-
tion are clearly satisfied since the limit point is at the global minimum of h. However, there
is a feasible direction from the limit point used infinitely often by the subsequence, which is
also a descent direction for the objective function. The sets of refining and limit directions
for f are

R f (K) =

{[

−2
1

]

,

[

2
0

]

,

[

−2
0

]

,

[

0
1

]

,

[

0
2

]

,

[

−1
1

]

,

[

−1
2

]

,

[

1
0

]

,

[

−1
0

]

,

[

1
1

]}

L f (K) =

{[

1
0

]

,

[

0
1

]

,
1√
10

[

−1
3

]}

.

The polar of the cone spanned by these directions is the cone spanned by the single direction
(0,−1)T , which is the gradient at the origin. Thus, Proposition 6.7 is again sharp. The
contingent cone at the origin is the half space a−b≤ 0, and the intersection of the contingent
cone at the origin with C f , the cone generated by convex conic hull of R f (K)∪L f (K), is the
convex conic hull of (−2,0)T and (1,1)T .

7.4. Filter results on a Boeing planform design application. The GPS filter algorithm
has been applied often to Boeing wing planform design problems. The wing planform is the
two-dimensional, downward, vertical projection of the wing. The design variables are the
line segment end point for the wing leading edges, trailing edges, and spars. Also there are
variables related to wing thickness and aerodynamic loading [3]. A typical design problem
is to minimize direct operating cost subject to several constraints. The constraints include
required range, maximum approach velocity, maximum required runway length, and several
others. The analysis code is a sophisticated combination of preliminary design tools from
many disciplines. The disciplines include structures, aerodynamics weights, costing, and
configuration management.

This problem has 17 variables, 13 nonlinear constraints, and no linear constraints. The
best point in the initial surrogate (a kriging model that interpolates data from 200 points
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obtained from an orthogonal-array-based Latin hypercube) is the least infeasible point, which
has a constraint violation of 0.426 and an objective of 9.845.
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FIG. 7.5. Filter progression on a Boeing planform design application

Figure 7.5 illustrates the progression of the filter for this application. In all plots, the
symbol × represents the initial point, except in the bottom right plot due to the scale change.
The top two plots correspond to the first 15 function evaluations, the middle ones the first 50
and the bottom ones are the whole filter after completing the 117 evaluations after the initial
200. The initial point gets filtered at the 3rd function evaluation. The first feasible point is
found at the 58th evaluation. The best feasible point is denoted on the two bottom plots by a
star at (0,9.75)T .

The bottom left plot contains several trial points with an objective function value near
9.6. This suggests that the SEARCH strategy tried, but was unsuccessful in finding a feasible



A PATTERN SEARCH FILTER ALGORITHM June 12, 2003 27

design with such a low f value.

7.5. Discussion. Though the algorithm behaved very well on the industrial design prob-
lem above (as well as on those in [3] and others), at first glance, one might be unimpressed
by the behavior of the algorithm on the academic examples of the last section. Of course,
they were designed to illustrate the tightness of our convergence results, and the crucial di-
rectional dependence of GPS methods. Our interest is for optimization problems, like the
planform problem, where derivative based methods are impractical. Our algorithm can only
rely on function values, and sometimes even these values are not reliable. A design example
is presented in [4, 5] where two times out of three the evaluation of the objective function
failed to produce a value.

A consequence of this absence of structure is that the convergence results that are guar-
anteed depend in part on the set of directions used in the POLL step. Indeed, the richer the
set of directions, the stronger the convergence result, since adding directions can increase
the number of refining and limit directions and widen the cone C f of Proposition 6.7, and
hence narrow its polar cone where the negative gradient of the objective is shown to reside.
Intuitively, if a POLL step identifies a poll center that is a mesh isolated filter point, then, the
next time a POLL is performed there (with a reduced mesh size parameter) it would be natural
to use a different positive spanning set to increase the likelihood of detecting an eventual de-
scent direction. However, essential to the convergence proof, is a finite total number of polling
directions. It follows that one cannot attempt to obtain a dense set of polling directions.

In practice, one would never use a pattern search algorithm following the rules upon
which these examples are based. First, we would use a SEARCH step such as a space-filling
latin hypercube sampling, or a surrogate based exploration or a more local SEARCH such as
the type suggested in [12]. Second, the set of polling directions would be enlarged in order
to avoid large gaps in the directions explored. Finally, the polling centers would sometimes
be the feasible incumbent, and sometimes the infeasible one with least constraint violation
value, but when promising filter points are generated (such as one with low f and h values),
nothing stops the SEARCH step from including an unofficial POLL around these candidates
as a part of the search. These simple algorithmic enhancements fit in the general description
of the algorithm presented in Section 4.3. Even with these improvements one could devise
twisted examples with the behavior of the above examples. It is however unlikely that such
behavior would be encountered in practice.
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